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I will use diag(−1, 1, 1, 1) in this short article.
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1 Kaluza-Klein theory

1.1 Kaluza-Klein metric

We use this renowned theory as our beginning, the Kaluza-Klein theory

is the first theory that uses the concept of compactification. It assumes

its spacetime as the flat Minkowski-like spacetime direct times a compact

space, which gives people more freedom to construct their theory in a higher

dimension, and later compactifies to the regular dimension.

What Kaluza proposed in 1919 is a theory that has a different dimension

with all physics theory at that time, it assumed a spacetime which has the

global topology as M4 × S1 and the entire 5d metric is

g̃µν =

(
gµν + ϕ2AµAν ϕ2Aµ

ϕ2Aν ϕ2

)
(1)

and its inverse is

g̃µν =

(
gµν −Aν

−Aµ ϕ−2 + AµA
µ

)
(2)
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and its determinant is g̃ = ϕ2g. A important assumption in all theory with ex-

tra dimension or compactified dimension is the higher dimension field should

be free from compactified dimension too keep the background stable,

∂5g̃µν = 0 (3)

It’s not hard to see that this metric choice has a U(1) symmetry inside the

compactified dimension, explicitly, when we consider the transformation

(xµ)
′ → xµ (4)

(x5)
′ → x5 − χ(xµ) (5)

and when we examine how the metric transforms

g̃
′

µν =
∂x̃α

∂x̃′µ

∂x̃β

∂x̃′ν
g̃αβ (6)

we get

ϕ→ ϕ Aµ → Aµ + ∂µχ gµν → gµν (7)

where gµν is the 4d metric.This is a sign that when we treat the Kaluza-Klein

theory as a 4d theory with extra dimension, we will gain a extra gauge theory

as well.We can also easily calculate its connection using the standard method

in general relativity,

Γ̃α
µν = Γα

µν + ϕ2gαβ(FµβAν + AµFνβ − AµAν∂βlnϕ
2)

Γ̃α
µ5 =

1

2
gαβϕ2(Fµβ − Aµ∂βlnϕ

2)

Γ̃α
55 = −1

2
gαβ∂βϕ

2

(8)

1.2 Kaluza-Klein action

The Kaluza-Klein action is merely a 5d version of 4d Einstein-Hilbert

action,

S̃KK =

∫
1

2κ̃
R̃
√
g̃d5x (9)
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and we can write the 5d scalar curvature in terms of 4d scalar curvature

R̃ = R− 1

4
ϕ2FµνF

µν − 2

ϕ
∂µ∂

µϕ (10)

S̃KK =

∫
[
1

2κ̃
R− 1

8κ̃
ϕ2FµνF

µν ]ϕ
√
gd5x−

∫
1

κ̃
∂µ∂

µϕ
√
gd5x (11)

when the theory is compactified, the extra dimension is integrated and be-

comes a constant as the coefficient of the 4d action

S̃KK =

∫
[
C

2κ̃
R− C

8κ̃
ϕ2FµνF

µν ]ϕ
√
gd4x−

∫
C

κ̃
∂µ∂

µϕ
√
gd4x (12)

with proper redefinition of the vector field and coefficients

Aµ →
√

2κ̃

C
Aµ κ̃ = 8πGC (13)

it’s not surprised to find out that if we assume the scalar field merely changes(as

a constant), the 4d action is Einstein-Hilbert action together with Maxwell

action

L =
1

16πG
R
√
g − 1

4
FµνF

µν (14)

1.3 natural charge quantization due to compactifica-

tion

When we examine the 5d geodesics,

dŨµ

ds
+ Γµ

αβŨ
αŨβ =

√
8πGϕ2Ũ5F µ

α Ũ
α (15)

and redefine
q

m
=

√
8πGŨ5 (16)

we actually get a 5d form of Lorentz force, but when the extra dimension is

a periodic circle, the extra momentum is naturally discrete

2π

mŨ5
=
C

n
(17)
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thus

q =
2πn

C

√
8πG (18)

makes the charge quantized

2 Beyond Kaluza Klein:how extra dimension

contribute to observable physics

2.1 extra scalar particles and harmonic operators

Kaluza-Klein theory proposed the higher dimensional field do not de-

pends with the extra dimension, but since the 5d Kaluza-Klein field is the

metric field which is the background as well as the dynamical degree of free-

doms, it’s not the general case that all higher dimensional field should be

fixed into such strict condition.

One general guess of how higher dimensional field are compactified to

lower dimension and makes lower dimensional field free from compactified

coordinates is by keep all dependence of compactified coordinates inside the

compact space,we still use the circle to be the compactified space as a exam-

ple.

S =

∫
d4xdy

1

2
|∂MΦ|2 (19)

and the fields dependence of the fifth dimension can be expanded

Φ(xµ, y) =
∑
n

ϕn(x
µ)einy/R (20)

considering that ∫ 2π

0

einy/Re−imy/R = 2πδnm (21)

we get the 4d effective theory

Seff =

∫
d4x

∑
n

((∂µϕn)
2 +

n2

R2
ϕ2
n) (22)
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A question occurs when we generalized our compactified space beyong a

circle, generally, a higher dimensional compact differential manifold, for ex-

ample we can do

Φ(xµ, θ, ϕ) =
∞∑
l=0

l∑
m=−l

ϕlm(x
µ)Ylm(θ, ϕ) (23)

where Ylm is the spherical harmonics, and this gives a family of particles

Seff =

∫
d4
∑
l,m

[(∂µϕlm)
2 +

l(l + 1)

R2
ϕ2
l,m] (24)

things becomes clear when we see the appearance of spherical harmonics, as

the solution of Laplace-Beltrami equation on the sphere, we can easily assume

that basis on each manifold is the solution of Laplace-Beltrami equation on

each manifold

∆f = λf (25)

the Laplace-Beltrami operator on any smooth Riemann manifold can be rep-

resent as

∆gf =
1√
|g|
∂i(
√
|g|gij∂jf) (26)

the higher dimensional field can be there expanded

Φ(xµ, yi) =
∑
k

ϕk(x
µ)fk(y

i) (27)

where fk are the solutions which has eigenvalue λk, and the compactification

gives the whole family of particles that has mass

m2
k = −λk (28)

2.2 how about vectors and spinors

We have go over the case for scalars fields, but what for vector and

spinor fields?Recall that the scalar field has to satisfy a classical Klein-Gordon

equation:
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(□+m2)ϕ(xµ) = 0 (29)

and this shows why the basis of expanding the higher dimension scalar field

requires the participation of solution of Laplace-Beltrami equation.

2.2.1 spinors

For a higher dimensional dirac action:

Sf =

∫
dDx

√
−GΨ̄ΓMDMΨ (30)

whereDM is the covariant derivative with the participation of spin connection

DM = ∂M + ωM (31)

then we can perform our expansion by basis functions

Ψ(xµ, yi) =
∑
k

ψ(k)(xµ)⊗ fk(y
i) (32)

where fk is the eigenfunction of Dirac equation

i /Dfk(y
i) = mkfk(y

i) (33)

and lower dimensional effective theory enjoys a spectra of mass mk spinor

field.

When does a lower dimension spinor is Majorana/Weyl/Majorana-Weyl?

Recall the Majorana condition:

Ψ = Ψc = CΨ† (34)

and Weyl decomposition

P± =
1± ΓD+1

2
(35)
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where

ΓD+1 ∝
D∏

M=1

ΓM (36)

due to the representation property of Clifford algebra (specifically the prop-

erty of Bott perodicity), we know that only even dimensions admits a Weyl

decomposition and only D = 0, 1, 2, 3, 4mod8 admits a Majorana spinor.

Specially, only D = 2mod8 admits a Majorana-Weyl spinor.

Thus, only if the original spinor is Majorana and

Ctotal = Cinternal ⊗ Cspacetime (37)

and Cspacetime is in a dimension where Majorana condition is well defined,

the compactified spinor can be Majorana.

The case for Weyl spinor compactification has some rather complicated

issues and we leave to the next subsection.

2.2.2 vectors

For gauge vectors,we do the decomposition

AM(xµ, yi) = (Aµ(x
µ, yi), Ai(x

µ, yi)) (38)

where the latter terms are those components on the compactified space,we

decompose the vector part still using the harmonics

Aµ(x
µ, yi) =

∑
k

A(k)
µ (xµ)fk(y

i) (39)

still, these vector fields has

m2
k = λk (40)

and only the zero modes persists the gauge symmetry.For the scalar part, we

some times choose the basis as the solution of

∇av(k)a (yi) = 0 (□+m2
k)v

k
a = 0 (41)
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and

Aa(x
µ, yi) =

∑
k

ϕ(n)(xµ)v(k)a (yi) (42)

where the scalar mass is zero if there exists Killing vectors.

Actually those zero mass scalar fields are the generalization of Wilson

integral on a circle, which still describes how the gauge field is curved on the

extra dimension which cannot be eliminated by gauge transformations.

2.3 We can’t hear the shape of a drum

If we already know all the observable spectra of the effective theory,can

we exactly fix the full theory before compactification? Luckily, this question

is studied by some of the greatest mathematicians of the last century.

2.3.1 0-modes and cohomology

From a general analysis of Lapalace-Beltrami operator, we are able to

know every of its eigenvalues associate to a finite dimensional eigenvector

space which often has degeneracy.The degeneracy of the zero mode can be

easily counted by Hodge’s theorem of decomposition

Hk
dR(M) ≃ Hk(M) (43)

which states the k-th order harmonic forms has a isomorphic space to k-th

order de Rham cohomology group.This means the degeneracy of zero mode

is simply b0, which is determined from the connectness.Since most of our

cases is connected, it’s a good news for us that a higher dimensional gauge

field only generates one lower dimensional gauge field, as the vector part is

expanded by harmonics:

Aµ(x
µ, yi) =

∑
k

A(k)
µ (xµ)fk(y

i) (44)
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2.3.2 Spinors and Index theorem and other invariants

We should note that not all manifolds is compatible with spinors.Since

the spin group is a 2-times cover of the special orthogonal group, there’s

some conditions when the vector bundles can be lift to a spin bundle, and

one summarized condition is that

w2(M) = 0 (45)

which is the trivialness of the second Stiefel-Whitney class.Only on these

manifolds we can discuss the definition and solution of Dirac equation.

One spectacular result of Dirac operator is the Index theorem, which

defines the index of Dirac operator as

ind(D) =

dimker(D+)− dimcoker(D+), dim(M) = 2n

0, dim(M) = 2n+ 1

where on even dimensional Spin manifolds the spin bundle can be Weyl

decomposed, and

D =

(
0 D−

D+ 0

)
(46)

the index theorem states that ∫
M

Â(TM) (47)

where

Â(TM) =

n/2∏
j=1

xj/2

sinh(xj/2)
(48)

where xj is the Chern root from the Chern class.This strictly constrains the

space of zero mass fermions.

We also have some estimation of non zero mass (but the lightest Dirac

fermion), one estimation from Lichnerowicz is

mmin ≥ R

4
(49)

where associate the lightest mass to the manifold’s scalar curvature.
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2.3.3 We can’t hear the shape of a drum

A natural question occurs after we analyzed the spectra of the effective

theory and the compact space: Can we figure out what exactly is the compact

space if we have all the spectra information? This coincident to a famous

article from Kac discussing the eigenvalues and the geometric and topological

information of where the Laplace equation is solved, sadly proved by Milnor

and other mathematicians, there are some examples when two different spaces

can give identical eigenvalues.

图 1: these two spaces have the same eigenvalues

However there are lot of information of the compact space can be in-

duced from the eigenvalue, like the Volume can be estimated from the Weyl’s

theorem

N(λ) = #{λ′
< λ} ∼ V ol(M)

(2π)n
V ol(Sn)λn/2 (50)

and also the heat kernel’s expansion associates to various of topological in-

variants ∑
k

e−λkt ∼ 1

(4πt)n/2

∞∑
j=0

ajt
j (51)

all these results means although we cannot exactly remodels the full theory

in higher dimension, we can make our best to guess and know as much as its

information from the generated particles from compactification.
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3 Interaction in compactification

We still use the eigenfunction of the Laplace-Beltrami equation as the

basis of expansion

∆fn(y
i) = −λnfn(yi) (52)

and a general Phi4 theory is

S =

∫
d4x

∫
M

ddy
√
g[
1

2
∂Mϕ∂

Mϕ+
1

2
m2ϕ2 +

λ

4!
ϕ4] (53)

when we regard the minus modes to be the conjugation, we find out the mass

of effective fields to be

m2
n = m2 + λn (54)

when we compactify the interaction term

Sint =
λ

4!

∫
d4x

∫
M

ddy
√
gϕ4

=
λ

4!

∫
d4x

∑
n1,n2,n3,n4

ϕn1ϕn2ϕn3ϕn4

∫
M

ddy
√
gfn1fn2fn3fn4

(55)

this gives

Sint =
λ

4!

∫
d4x

∑
n1,n2,n3,n4

Cn1n2n3n4ϕn1ϕn2ϕn3ϕn4 (56)

where

Cn1n2n3n4 =

∫
M

ddy
√
gfn1fn2fn3fn4 (57)

this produce selection rule on some basis where more symmetries is admitted,

for on S1,only

n1 + n2 + n3 + n4 = 0 (58)

is allowed,similarly when we consider Yukawa theory or QED theory com-

pactified on a arbitrary compact space, we should calculate(we use Yukawa

as a example)

Cnmk =

∫
M

ddd
√
gg†ngmfk (59)

where gn is the solution of Dirac equation
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4 Compactification after quantization

4.1 General description

We know that, generally, the measure of path integral changes like

Dϕ = Dχ|J(δϕ
δχ

)|exp(i
∫

A[χ]) (60)

for we change our field description from {ϕ} to {χ}, specifically in the case

of compactification,

Φ(x, y) =
∑
k

ϕk(x)fk(y) (61)

the Jacobian

Jk(x, y) =
δΦ(x, y)

δϕk(x
′)

= fk(y)δ
(d)(x− x

′
) (62)

so for most our cases, when normalization is well performed, we have

DΦ =
∏
k

Dϕk (63)

but in some cases, there is a quantum anomaly comes from compactifying

the higher dimensional field.

4.2 Anomaly by Compactification

However, it’s very simple to construct a theory which has a quantum

anomaly after compactification.We consider a massless 6d QED theory

S6D =

∫
d4xdy(−1

4
FMNF

MN + iΨ̄γMDMΨ) (64)

We know that normally there is a chiral anomaly in 4d QED theory, so we

have to find out how to make this theory anomaly in 4d.

We choose an orbifold T 2/Z2 to define its compact space, this space

makes y = (0, 0) , y = (0, πR2),y = (πR1, 0)，y = (πR1, πR2) four singular
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point of the space. We can specifically fix how the Fermion behaves on the

orbifold

Ψ(x,−y) = ηγ5Ψ(x, y) (65)

and for unitary considerations, we have

η = ±1 (66)

We can apply different boundary conditions to left and right hand side Weyl

fermions

Ψ(x,−y)L = Ψ(x, y)R (67)

and

Ψ(x,−y)R = Ψ(x, y)R (68)

this means when compactifying the theory and by only considering it’s zero

mode, only right hand fermion will survive in the theory

S4D =

∫
d4xdy(−1

4
FµνF

µν + iΨ̄Rγ
µDµΨR) (69)

and this gives a chiral anomaly.

5 a short example of Flux compactification

One interesting aspect on modern string compactification is the flux

compactification, and I will here present a short example on this method.

Consider a 5d Maxwell-Chern-Simons theory which involves a Chern-

Simons interacting term

S5d =

∫
d5x(−1

4
FMNF

MN +
κ

2
ϵMNPQRAM∂NAP∂QAR) (70)

and we compactify the theory on a circle, for vector fields, we often do the

decomposition

Aµ(x
µ, y) = Aµ(x

µ) Ay(x
µ, y) = ϕ(xµ) (71)
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and here we only consider the Kaluza-Klein zero mode, higher modes are not

considered. The idea of flux compactification is by introducing a nontrivial

source on the compactified dimension∫
S1

dy∂yAy = 2πn (72)

where

Ay =
n

R
+ ϕ(xµ) (73)

and this not only gives a scalar field ϕ, but also introducing a new parameter

which can control the interaction

S4D =

∫
d4x(−πR

2
FµνF

µν − πR(∂µϕ)
2 +

κn

R
ϵµνρσAµ∂νAρ∂σϕ) (74)

in actual physics, vector fields are some times fluxed by a generalization

version ∫
Σp

Fp = n (75)

where the element Σp is often chosen as an element in the Homology group

as a generalization of non trivial circle.

6 How far can Kaluza-Klein goes

6.1 non abelian gauge theories from Kaluza-Klein the-

ory

In order to construct non abelian gauge theories from the standard

Kaluza-Klein technique, we need to make the compact manifold has some

nontrivial properties, one important property, since Kaluza-Klein theory al-

ways expect a unification with Einstein gravity theory, is the group of isom-

etry on the compact space.

y → y
′
: g̃

′

mn(y
′
) = g̃mn(y) (76)
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an isometry is a coordinate that leaves the form of the metric invariant, and

when the general infinitesimal isometry is

eiϵ
ata : yn → yn + ϵaξna (y) (77)

where ξna are the Killing vectors,they obey the algebra

ξmb ∂mξ
n
b − ξmc ∂mξ

n
b = −Cabcξ

n
a (78)

where

[ta, tb] = iCabctc (79)

It is obvious since we want a non abelian gauge field, we may need a compact

manifold which has dimensions more then 1. And the full metric is assumed

as (
gµν − g̃mn(y)B

m
µ B

n
ν Bn

µ

Bm
ν −g̃mn(y)

)
(80)

where

Bn
µ = ξnaA

a
µ (81)

and this gives Aa
µ a non abelian gauge symmetry

Aa
µ → Aa

µ + ∂µϵ
a(x) + Cabcϵ

b(x)Ac
µ (82)

we can re define the generators by

Cabc = gfabc ta = gTa (83)

and this introduces the coupling constant and group generators {Ta}

6.2 Can the standard model be constructed from Kaluza-

Klein

So the construction above shows that gauge group of lower dimensions

can be viewed as a isometry group of compact space, if we want to directly
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get a standard model from Kaluza-Klein, we need to find a space that has

SU(3)× SU(2)× U(1).

One construction of spaces with an arbitrary isometry group G is by

constructing G/H where H is the subgroup of G, from this we can estimate

the dimension of the expected compact space, where the maximal subgroup

of SU(3)× SU(2)× U(1) is

H = SU(2)× U(1)× U(1) (84)

and

dim(K) = dim(G/H) = dim(G)− dim(H) = 12− 5 = 7 (85)

this means the unified theory should at least be 11 dimensional to generate

the standard model. Witten studied this question at 1981, and he denote the

general coset space of this type as space Mpqr, when denoting the generators

of SU(3) , SU(2) and U(1) by

1

2
λa,

1

2
σα, Y (86)

and it is necessary to select two U(1) factors commuting with the SU(2)

to be in H. In other words, it is necessary to select one combination of
1
2
λ8,

1
2
σ3, Y which does not occur in H, Witten denote this combination as

Z =
1

2
(
√
3pλ8 + qσ3 + 2rY ) (87)

with p, q, r are arbitrary integers to give a compact U(1), then the two com-

binations which lie in H may be taken to be ther orthogonal combinations

Z
′
=

1

2
(2
√
3prλ8 + 2qrσ3 − 2(3p2 + q2)Y ) (88)

and

Z
′′
=

1

2
(−

√
3qλ8 + 3pσ3) (89)
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which completes the construction of K. But generally , Z,Z
′
, Z

′′
are not

required to be orthogonal and Randjbar-Daemi et al at 1984 find that we

can choose

Z =
1

2
(
√
3pλ8 + qσ3 + 2rY ) (90)

but take two U(1) factors of H to be

X
′
=

1

2

√
3λ8 + sY (91)

and

X
′′
=

1

2
σ3 + tY (92)

where s and t are free parameters,but there is a constraint

ps+ qt− r ̸= 0 (93)

which the space is labelled as Mpqrt.This space will gives a effective theory

which looks like our standard model, but only has free particles.
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